Halogen Exchange Reactions involving Uranium-(v) and -(vi) Halides By David Brown,* Chemistry Division, A.E.R.E., Harwell, Didcot, Oxfordshire OX11 0RA John A. Berry and John H. Holloway, Department of Chemistry, The University, Leicester LE1 7RH The room temperature halogen exchange reactions of UF₅ with liquid BBr₃ or BCl₃ provide convenient new routes to α -UBr₅ and β -UCl₅, respectively. In both cases the yields are quantitative. Since the uranium pentahalides are the only involatile products of the reactions they are easily isolated. Reactions between BBr₃ and solid UCl₆ or UCl₅ also yield α -UBr₅ but in the presence of CH₂Cl₂, a new crystallographic modification, β -UBr₅, is produced. Interaction of UF₆ and BBr₃ yields either α - or β -UBr₅, depending on the conditions, but the products are usually contaminated with UBr₄. Liquid BCl₃ converts UO₂F₂ to α - or β -UCl₅, depending on the period of contact, whilst exposure of UO₂F₂ to gaseous BCl₃ yields UCl₆. X-Ray powder diffraction and vibrational spectroscopic data are reported for α - and β -UBr₅. There are few really satisfactory methods for the preparation of uranium pentachloride and pentabromide in good yield and of high purity. Possibly the most attractive published route to gram amounts of UCl₅ involves the room temperature decomposition of UCl₆ in solvents such as methylene dichloride, 1,2-dichloroethane, or carbon tetrachloride, whilst for UBr₅ those involving bromination of the metal or UBr₄ at temperatures up to 55 °C are the most satisfactory. Previous studies in this laboratory ⁹ have shown that boron tribromide is a valuable reagent for the preparation of actinide(v) bromo-complexes and PaBr₅, whilst other workers ¹⁰ have employed boron trichloride for the conversion of UF₆ to UCl₆. We now report new preparative methods for both UCl₅ and UBr₅ which involve halogen exchange between uranium halides such as UF₆, UF₅, UCl₆, or UCl₅ and the appropriate boron trihalide. A new polymorph of UBr₅ is described, and a new route to UCl₆ and a convenient method for converting UCl₆ to UCl₅ are reported. ## EXPERIMENTAL Apparatus and Reagents.—All manipulations were performed either in glass vacuum equipment or in glass apparatus in an inert-atmosphere box $(H_2O \text{ and } O_2 \text{ content} < 20 \text{ p.p.m.})$. Commercially available UF₆ (B.N.F.L.) and BCl₃ (Matheson) were used directly; the vapour pressure of the former indicated the absence of HF. Boron tribromide (B.D.H.) was distilled *in vacuo* prior to use. The compounds UCl₆, ¹⁰ UCl₅, ⁵, ⁶ and UF₅ ¹¹, ¹² were prepared by published methods. Finely divided UO₂F₂ was made by controlled hydrolysis of UF₆; reactions were checked using a sample of different origin. Carbon tetrachloride and methylene dichloride were distilled *in vacuo* and stored over molecular sieves under vacuum. Nujol was dried over sodium. Uranium Hexachloride.—A quantity of UO_2F_2 (0.1—0.2 g; 0.3—0.6 mmol) was exposed to BCl_3 vapour in a sealed, two-compartment vessel for 1—2 weeks. The resulting dark green product, which was extracted into anhydrous CCl₄, was identified as UCl₆ by X-ray powder diffraction and chemical analysis (Found: U, 51.8; Cl, 47.25. Calc. for UCl₆: U, 52.75; Cl, 47.25%). The gaseous by-products of this reaction were shown by i.r. spectroscopy to be BF₃, BF₂Cl, BFCl₂, and unreacted BCl₃. ¹³ α -Uranium Pentachloride.—An excess of BCl₃ was condensed onto UCl₆ (0.1 g; 0.2 mmol) at 77 K and the mixture allowed to warm to room temperature (r.t.). The brown solid product isolated after 1 h was shown by X-ray powder diffraction analysis to be α -UCl₅. The same product was obtained from the UO₂F₂-BCl₃ reaction when the reagents were left in contact for ca. 1 week. After identification by X-ray powder diffraction analysis the product was extracted into anhydrous carbon tetrachloride. β-Uranium Pentachloride.—An excess of BCl₃ was condensed onto α- or β-UF₅ (0.1—0.2 g; 0.3—0.6 mmol) at 77 K and the mixture allowed to warm to r.t. Unreacted BCl₃ and gaseous by-products were removed from the brown product by vacuum distillation after 2—3 d. X-Ray powder diffraction analysis showed the presence of only β-UCl₅ (Found: U, 57.8. Calc. for UCl₅: U, 57.3%). β-UCl₆ was also obtained from the reaction between UO₂F₂ and liquid BCl₃ when the reagents were left in contact for several weeks. The product was extracted into anhydrous CCl₄ after removal of excess BCl₃ and gaseous by-products as before. α-Uranium Pentabromide.—An excess of liquid boron tribromide (1 cm³; 10.6 mmol) was added to solid UCl₆, β -UCl₅, or α-UF₅ (0.2—0.5 g; 0.4—1.5 mmol) at r.t. The mixture was allowed to stand in a stoppered or sealed vessel for 3 or 4 d and then heated for a few minutes (ca. 40 °C) for the chloride reactions, whilst continuous stirring was applied to the UF₅-BBr₃ mixture for ca. 1 week. The resulting black solid was isolated by centrifugation and decantation, and vacuum dried at r.t. (10⁻⁴ Torr †) or, alternatively, by removal of the boron trihalides by vacuum evaporation. Yields were quantitative. The product of the UF₅-BBr₃ reaction was characterised by elemental analysis (Found: U, 37.65; Br, 61.6. Calc. for UBr₅: U, 37.35; † Throughout this Note: 1 Torr = (101 325)/760 Pa. Br, 62.65%). Products from other preparations were identified by X-ray powder diffraction analysis. β-Uranium Pentabromide.—An excess of BBr₃ (0.5 cm³; 5.3 mmol) was added to UCl₆ (0.1 g; 0.2 mmol) dissolved in anhydrous, oxygen-free CH₂Cl₂ (ca. 6 cm³) at r.t. The red solution initially turned dark blue-green but this colour faded within a few minutes as a black solid deposited. After a few hours the product was isolated by centrifugation and decantation, washed with CH₂Cl₂, and vacuum dried at r.t. (10⁻⁴ Torr) (Found: U, 37.4; Br, 62.5. Calc. for UBr₅: U, 37.35; Br, 62.65%). UCl₅ may also be employed as a starting material. Analysis and Physical Measurements.—Uranium was determined by addition of aqueous ammonia to halide samples cooled to 77 K. The resulting hydrous oxide was isolated by filtration and ignited to U₃O₈. Halide in the supernatant was precipitated after acidification with HNO₃ and weighed as the silver salt. X-Ray powder photographs were recorded as described previously.¹⁴ Infrared spectra (4 000—100 cm⁻¹) were recorded for samples mounted in Nujol between AgCl or Si plates. Raman spectra were recorded as described previously.¹⁵ ## RESULTS AND DISCUSSION The halogen exchange reactions between UF₅ and the liquid boron trihalides which occur at r.t. in the absence of a solvent provide excellent routes to quantitative yields of β-UCl₅ and α-UBr₅. The results for the UF₅-BCl₃ reaction differ from those of O'Donnell and Wilson 16 who reported that the products are UCl₆, UF₄, and BF₃. The formation of UF4 and UCl6 was surprisingly attributed to an initial disproportionation of the pentafluoride ($2UF_5 \rightarrow UF_4 + UF_6$), the hexafluoride so produced being converted to the hexachloride. The only apparent major difference between the experimental conditions employed in the two studies is the method of preparation of the UF₅. In the present work, the pentafluoride was isolated and characterised by X-ray powder diffraction analysis, whereas in the earlier investigation 16 it was made in situ by reacting the correct proportions of UF, and UF4. One possible explanation for the different observations is that the UF₆-UF₄ mixture had not reacted to form UF, as intended and thus the reaction studied was that of UF₆, with the UF₄ playing no part. The temperature at which UF₆ will fluorinate UF₄ is very variable, being extremely dependent on the form of UF4, in particular its surface area.17 The absence of tetrafluoride from the present products was confirmed by the fact that they were completely soluble in anhydrous methyl cyanide. When UO_2F_2 is exposed to BCl_3 vapour the product (after a period of 1-2 weeks) is UCl_6 . In contrast to this, liquid BCl_3 converts UO_2F_2 virtually quantitatively to UCl_5 at r.t.; the α -phase being formed during reaction periods of ca. 1 week, whilst β - UCl_5 is the product after several weeks. This difference in behaviour was further studied by the addition of an excess of liquid BCl_3 to solid UCl_6 . By the time the reaction mixture had warmed to r.t. (ca. 0.5 h) conversion to α - UCl_5 was com- plete. The presence of chlorine in the supernatant BCl₃ was confirmed spectroscopically. Prolonged contact of the α -phase with liquid BCl₃ resulted in a phase change to β -UCl₅. This rapid conversion of UCl₆ to UCl₅ on contact with liquid BCl₃ indicates that the previously reported 10 UF₆-BCl₃ reaction may be extended to yield UCl₅ rather than UCl₆. As shown in the Scheme the reactions between solid UF₅, UCl₆, or UCl₅ and BBr₃ at r.t. all yield α-UBr₅, o This reaction can also yield $\beta\text{-}UBr_{5};$ the products are generally contaminated with $UBr_{4},\ ^{b}$ Ref. 10. o $\beta\text{-}UCl_{5}$ is the ultimate product; short reaction periods yield $\alpha\text{-}UCl_{5}.$ SCHEME Halogen exchange reactions of uranium-(vI) and -(v) fluorides and chlorides which is the phase prepared previously ^{7,8} by bromination of uranium metal or UBr₄, and shown recently ¹⁸ to be isostructural with β -UCl₅. The reactions involving the chlorides are complete within 2—3 d at r.t., or more quickly on application of heat (ca. 40 °C), but it is necessary to stir the UF₅–BBr₃ mixture for several days at r.t. Addition of BBr₃ to a solution of UCl₆ in methylene dichloride initially yields a dark blue-green solution which turns reddish brown after a few minutes as a black solid is deposited. This product is a new polymorph of uranium pentabromide which we have designated β -UBr₅. The same phase is obtained from UCl₅ in methylene dichloride and, mixed with UBr₄, from the low temperature reaction between UF₆ and BBr₃. The latter observation is again at variance with results reported by O'Donnell *et al.*¹⁰ who state that UF₆ is reduced to the tetrafluoride by BBr₃. In contrast to this we find that, depending on the rate at which the reactants are allowed to warm from 77 K to r.t., the product is either a mixture of β -UBr₅ and UBr₄ (slow warm up), or α -UBr₅ and UBr₄ (fast warm up). The reaction appears to proceed slowly even at ca. 77 K as indicated by the development of a dark colour on condensation of BBr₃ onto UF₆ at this temperature. Although pure α - and β -UBr₅ have on occasions been obtained from such reactions, exact conditions for reproducible formation of pure pentabromide have proved elusive and some tetrabromide contamination is usually encountered. However, the extent of tetrafluoride formation in several different reactions ranged from zero to ca. 1%. Crystallographic Data.—Although there are similarities between the X-ray powder patterns of α - and β -UBr₅ it is apparent from the $\sin^2\theta$ values and intensities listed in Tables 1 and 2 that they are not identical. Furthermore, Table 1 Partial X-ray powder diffraction results for β -UBr₅ | $\sin^2\theta_{obs}$. | $I_{ m est.}$ | $\sin^2\theta_{obs}$. | $I_{ m est.}$ | |------------------------|---------------|------------------------|----------------| | 0.0154 | s | 0.1362 | m | | 0.0242 | m | 0.1515 | s | | 0.0271 | m | 0.1588 | s | | 0.0310 | m — | 0.1827 | m | | 0.0543 | vw- | 0.1941 | w | | 0.0585 | w | 0.2090 | vw | | 0.0658 | S | 0.2193 | m | | 0.0685 | m+ | 0.2300 | w | | 0.0735 | m — | 0.2345 | w | | 0.0781 | m — | 0.2389 | w — | | 0.0826 | w + | 0.2435 | w | | 0.0854 | w | 0.2484 | vw- | | 0.1097 | s- | 0.2575 | vw — | | 0.1124 | m + | 0.2629 | $\mathbf{w} +$ | | 0.1226 | w | 0.2686 | vw- | s = Strong, m = medium, w = weak, vw = very weak. the relative intensities of the reflections on films of β-UBr₅ were the same for all preparations regardless of the method employed, indicating that the products were single phase. Attempts to obtain single crystals of β-UBr₅ have so far been unsuccessful and it has not been possible to index the observed reflections. Comparison with reflection positions and intensities calculated for the β-PaBr₅ structure has shown that the two phases are not isostructural. However, X-ray powder data for several different samples of PaBr₅ prepared over a period of years in this laboratory are virtually identical with those now reported for β-UBr₅. It is hoped that structural work currently in progress will establish whether these powder patterns correspond to α-PaBr₅ or whether another crystal modification of this compound exists, in addition to the α -, ¹⁹ β -, ¹⁹ and γ -phases ¹⁴ previously reported. Only very limited X-ray powder data have been reported for α -UBr₅.⁷ Comparison of observed with calculated $\sin^2\theta$ values and reflection intensities (Table 2) confirms that this is the phase formed in reactions involving solid UF₅, UCl₆, or UCl₅ and BBr₃. Vibrational Spectra.—The i.r. and Raman spectra we have recorded for $\beta\text{-UCl}_5$ are in close agreement with those published by Kolitsch and Müller 20 apart from the Table 2 Partial X-ray powder pattern for α -UBr_s | Partial X-ray powder pattern for α -UBr ₅ | | | | | | | |---|--|--|----------------------|-------------------------|--|--| | $\sin^2 \theta_{obs.}$ | sin²θ _{calc.} σ | h, k, l | $I_{\mathrm{calc.}}$ | $I_{ m obs.}$ $^{ m o}$ | | | | 0.0153 | 0.0150 | Ī 1 0 | 28 | w+ | | | | 0.0103 | | Ī 0 1 | 25 1 | ** | | | | 0.0175 | $ \{ egin{array}{l} 0.0171 \ 0.0174 \end{array} \} $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 16 | w | | | | | | | • | | | | | 0.0203 | {0.0199 | I 1 1 | 15] | w | | | | | 0.0206 | 0 I 1 | 117 | | | | | | (0.0266) | 0 2 0 | 15) | | | | | 0.0270 | $\begin{cases} 0.0275 \\ 0.0276 \end{cases}$ | 111 | 4 | vw- | | | | | (0.0276 | 0 1 1 | 4 J | | | | | 0.0300 | 0.0296 | 1 1 0 | 7 | vw- | | | | 0.0541 | ∫0.0537 | Ī 3 0 | 7) | vw- | | | | 0.0341 | ₹0.0541 | 121 | 6} | V W - | | | | | (0.0596) | Ī 1 2 | 6) | | | | | 0.0602 | 0.0599 | 0 3 0 | 1 } | \mathbf{w} — | | | | | 0.0600 | 2 2 0 | 5∫ | | | | | 0.0634 | 0.0627 | 200 | 2 | vw- | | | | 0.0001 | | I 3 1 | 991 | • •• | | | | 0.0660 | $egin{cases} 0.0656 \ 0.0658 \end{cases}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 100 | s | | | | | | | , | | | | | 0.0695 | {0.0693 | 0 T 2 | 46) | m | | | | | l0.0696 | 0 0 2 | 15 | | | | | | 0.1101 (| <u> 2 4 1</u> | 40} | | | | | | 0.1101 | $2 \ 2 \ \overline{2}$ | 1 | | | | | 0.1104 | ₹ 0.1103 | $0 \ 2 \ 2$ | 2 } | \mathbf{m} | | | | | 0.1103 | <u>3</u> 01 | 35 | | | | | | (0.1107 | 2 4 0 | 5) | | | | | | (0.1120) | 201 | 35) | | | | | 0.1123 | ₹0.1123 | Ī <u>3</u> 2 | 7 } | m | | | | | (0.1123) | 141 | 14) | | | | | | (0.1146 | 3 0 2 | 13) | | | | | 0.1152 | $\{0.1149$ | 3 3 1 | 7 > | m | | | | 0.1101 | 0.1153 | 1 2 2 | 45 | | | | | 0.1376 | 0.1379 | 0 4 1 | 7 | w | | | | 0.1370 | | | - | ** | | | | 0.1417 | $\begin{cases} 0.1413 \\ 0.1414 \end{cases}$ | 2 3 I | 10 | | | | | 0.1417 | {0.1414 | $\begin{smallmatrix}1&3&1\\ \overline{2}&2&3\end{smallmatrix}$ | 4 | w | | | | | (0.1417 | | 3 J | | | | | 0.1517 | 0.1514 | 1 4 0 | 27 | m — | | | | | (0.1574 | I 2 3 | 63) | | | | | 0.1577 | $\{0.1574$ | 3 2 <u>3</u> | 7 } | \mathbf{m} | | | | | (0.1581 | $2 2 \overline{3}$ | 27) | | | | | | (0.1664) | 2 3 0 | 2) | | | | | 0.1669 | $\sqrt{0.1665}$ | 050 | 4 | w | | | | | 0.1665 | $1\ 4\ 2$ | 9) | | | | | | (0.1738 | 0 1 3 | 5 ົ) | | | | | 0.1740 | 0.1738 | 3 2 Ĭ | 10 | w | | | | | 0.1743 | 4 2 2 | 0.4 | | | | | | (0.1846 | 3 5 1 | 1) | | | | | | 0.1848 | 4 1 1 | il | | | | | 0.1849 | 0.1850 | $\vec{0}$ $\vec{3}$ $\vec{3}$ | i} | w | | | | | 0.1854 | 4 3 2 | 44) | | | | | | (0.1876 | 3 Ī 1 | 48) | | | | | 0.1881 | 10.000 | | | m+ | | | | | (0.1879 | 251 | 47 } | | | | | 0.0000 | $\begin{cases} 0.2201 \\ 0.2201 \end{cases}$ | 1 3 2 | 34) | | | | | 0.2202 | {0.2203 | 103 | 2} | m — | | | | | (0.2204 | 2 1 4 | 1) | | | | | 0.2258 | 0.2261 | 314 | 37 | m — | | | | | (0.2395) | 361 | 1) | | | | | 0.2399 | $\{0.2397$ | <u>0</u> 6 0 | 0.5 | m — | | | | | (0.2400 | 440 | 22 | | | | | 0.3355 | 0.3363 | 3 7 2 | 19 | w | | | | # Color | | nublished uni | 11 18 | h Calaulat | | | ^a Calculated from the published unit cell.¹⁸ ^b Calculated from the published positional parameters ¹⁸ and corrected for absorption. ^c Visually estimated; s = strong, m = medium, w = weak, vw = very weak. absence of a shoulder at 308 and weak bands at 263 and 64 cm⁻¹. The two phases α - and β -UBr₅ give almost identical i.r. spectra with bands at 244s (U-Br_{ax.}), 230s (U-Br_{eq.}), 200m (U-Br_{ax.}), 148m (ring mode), and 120w, br cm⁻¹ (deformation mode). One of us (J. A. B.) thanks the S.R.C. for the award of a research associateship. [1/1546 Received, 6th October, 1981] ## REFERENCES - ¹ K. W. Bagnall, 'The Halogen Chemistry of The Actinides,' Chapter 7 in 'Halogen Chemistry,' ed. V. Gutmann, Academic - Press, London, 1967, vol. 3. ² D. Brown, 'Halides of the Lanthanides and Actinides,' Wiley and Son, London, 1968. ³ D. Brown in 'Comprehensive Inorganic Chemistry,' eds. C. Bailar, H. J. Emeléus, R. Nyholm, and A. F. Trotman-Dickenson, Pergamon Press, Oxford, 1973, vol. 5. - D. Brown in 'Gmelin Handbuch der Anorganischen Chemie,' C. Keller, System No. 51, Uranium, 'Compounds with ed. C. Keller, System No. 51, Uranium, Chlorine, Bromine, and Iodine, 1979, vol. C. 9. - ⁵ U. Müller and W. Kolitsch, Z. Anorg. Allg. Chem., 1974, - 410, 32. ⁸ D. Brown, G. De Paoli, and B. Whittaker, A.E.R.E. - Report R8260, 1976. ⁷ F. Lux, G. Wirth, and K. W. Bagnall, Chem. Ber., 1970, 103, 2807. - 8 F. Lux and G. Wirth, Proc. 13th Int. Conf. Co-ord. Chem., - Cracaw, 1970, p. 207. D. Brown, J. Hill, and C. E. F. Rickard, J. Chem. Soc. A, - 1970, 476. 10 T. A. O'Donnell, D. F. Stewart, and P. Wilson, *Inorg. Chem.*, - 1. A. O Dolniel, D. F. Stewart, and P. Wison, Inorg. Chem., 1966, 5, 1438; Inorg. Synth., 1976, 16, 143. 11 W. Bacher and E. Jacob, in 'Gmelin Handbuch der Anorganischen Chemie,' ed. C. Keller, System No. 51, Uranium, 'Compounds with Fluorine,' 1980, vol. C. 8. 12 J. A. Berry, A. Prescott, D. W. A. Sharp, and J. M. Winfield, J. Fluorine Chem., 1977, 10, 247. 13 D. F. Wolfe and G. L. Humphrey, J. Mol. Struct., 1969, 3, 202 - 293. 14 D. Brown, *Inorg. Nucl. Chem. Lett.*, 1979, **15**, 219. 15 D. Brown, B. Whittaker, and P. E. Lidster, A.E.R.E. Report R8035, 1975. - T. A. O'Donnell and P. Wilson, Aust. J. Chem., 1968, 21, 1421. - ¹⁷ J. S. Broadley and P. B. Longton, U.K.A.E.A. Report DDC/P-68, 1958. - J. H. Levy, J. C. Taylor, and P. W. Wilson, J. Inorg. Nucl. Chem., 1978, 40, 1055. D. Brown, T. J. Petcher, and A. J. Smith, Acta Crystallogr., - Sect. B, 1969, 25, 178. 20 W. Kolitsch and U. Müller, Z. Anorg. Allg. Chem., 1975, **418**, 235.